

FINAL INVESTIGATION REPORT ON SERIOUS INCIDENT INVOLVING M/S INDIGO AIRBUS A320 (NEO) AIRCRAFT VT-IVB ON 01.04.2019

AIRCRAFT ACCIDENT INVESTIGATION BUREAU
MINISTRY OF CIVIL AVIATION
GOVERNMENT OF INDIA

FOREWORD

This document has been prepared based upon the evidences collected during the investigation and opinions obtained from the experts. The investigation has been carried out in accordance with Annex 13 to the convention on International Civil Aviation and under Rule 11 of Aircraft (Investigation of Accidents and Incidents), Rules 2017 of India.

The investigation is conducted not to apportion blame or to assess individual or collective responsibility. The sole objective is to draw lessons from this serious incident which may help in preventing such incidents in future.

INDEX			
Para	Content	Page No.	
	SUMMARY	1	
	SYNOPSIS	2	
1	FACTUAL INFORMATION	3	
1.1	HISTORY OF THE FLIGHT	3	
1.2	INJURIES TO PERSONS	3	
1.3	DAMAGE TO AIRCRAFT	3	
1.4	OTHER DAMAGE	4	
1.5	PERSONNEL INFORMATION	4	
1.6	AIRCRAFT INFORMATION	5	
1.7	METEOROLOGICAL INFORMATION	11	
1.8	AIDS TO NAVIGATION	11	
1.9	COMMUNICATIONS	11	
1.10	AERODROME INFORMATION	11	
1.11	FLIGHT RECORDERS	11	
1.12	WRECKAGE AND IMPACT INFORMATION	11	
1.13	MEDICAL AND PATHOLOGICAL INFORMATION	12	
1.14	FIRE	12	
1.15	SURVIVAL ASPECTS	12	
1.16	TESTS AND RESEARCH	12	
1.17	ORGANISATIONAL AND MANAGEMENT INFORMATION	13	
1.18	ADDITIONAL INFORMATION	14	

1.19	USEFUL OR EFFECTIVE INVESTIGATION TECHNIQUES	15
2	ANALYSIS	17
2.1	GENERAL	17
2.2	CIRCUMSTANCES LEADING TO THE INCIDENT	17
2.3	LPT 3 RD STAGE BLADE FAILURE AND PREVENTIVE ACTION	18
3	CONCLUSION	18
3.1	FINDINGS	18
3.2	PROBABLE CAUSE OF THE INCIDENT	19
4	SAFETY RECOMMENDATIONS	19

GLOSSARY

Aircraft Accident Investigation Bureau, India
Aircraft Communication Addressing and Reporting System
Above Mean Sea Level
Airworthiness Review Certificate
Air Turn Back
Air Traffic Control
Airline Transport Pilot License
All Up Weight
Certificate of Airworthiness
Certificate of Registration
Civil Aviation Requirements
Current Engine Option
Commercial Pilot License
Directorate General of Civil Aviation
Electronic Centralized Aircraft Monitor
Engine Serial Number
Flight Crew Operating Manual
Flight Radio Telephone Operators License
International Air Transport Association
Ground Turn Back
International Civil Aviation Organization
In-Flight Shut Down
Low Pressure Turbine
Material of Construction
New Engine Option
Original Equipment Manufacturer

PIC	Pilot in Command	
P&W	Pratt and Whitney	
QRH	Quick Reference Handbook	
RTO	Reject Take-off	
SB	Service Bulletin	
SSCVR	Cockpit Voice Recorder	
SSDFDR	Digital Flight Data Recorder	

FINAL INVESTIGATION REPORT ON SERIOUS INCIDENT INVOLVING M/S INDIGO AIRBUS A320 (NEO) AIRCRAFT VT-IVB ON 01/04/2019

1. Aircraft Type : Airbus A320-271 NEO

Nationality : Indian

Registration : VT - IVB

2. **Owner** : M/s Vermillion Aviation (Three) Limited

3. **Operator** : Inter Globe Aviation Ltd (IndiGo)

3. **Pilot – in –Command** : ATPL (FATA) holder

Extent of Injuries : Nil

4. **First Officer** : ATPL Holder

Extent of injuries : Nil

5. **Place of Serious Incident**: Enroute (Near Jaipur)

6. **Date & Time of Incident** : 01st April 2019 & 1308 UTC

7. **Last Point of Departure** : Jaipur Airport

8. Point of Intended Landing : Hyderabad Airport

10. **Type of Operation** : Scheduled Operation

11. **Passengers on Board** : 128 (Including 04 Cabin Crew Members)

Extent of Injuries : Nil

12. **Phase of Operation** : Climb

13. **Type of Occurrence** : Air Turn Back due to Engine Stall.

(All the timings in this report are in UTC unless otherwise specified)

SYNOPSIS

On 01st April 2019, M/s Indigo Airbus A320-271 (NEO) aircraft VT-IVB, while operating a scheduled flight from Jaipur to Hyderabad was involved in a Serious Incident of Air Turn Back due to Engine Stall during climb. The aircraft was under the command of a ATPL (FATA) holder with an ATPL holder co-pilot. There were 128 passengers on board the aircraft including 04 cabin crew members.

The aircraft took-off from Jaipur and had an uneventful flight until climbing pass 14600 feet altitude, when a loud bang was heard by the crew and subsequently, 'ENG # 1 STALL' ECAM triggered. This was followed by 'ENG 1 HGH VIB' and 'ENG 1 EGT OVERLIMIT' on ECAM. The Engine N1 and N2 vibrations was at 10 and the EGT was noticed to be increasing past 1000°C. The crew carried out ECAM and QRH procedures. As the Engine parameters were abnormal, the crew decided to divert back to Jaipur. The aircraft was then diverted back to Jaipur. The aircraft landed safely at Jaipur. After landing, 'ENG 1 OIL CHIP DETECTED' ECAM triggered. While turning into bay, 'ENG 1 FAIL' and 'ENG 1 START FAULT' ECAMs triggered. On visual inspection of the engine inlet area and exhaust area, all blades of LPT 3rd stage were found damaged.

The occurrence was classified as Serious Incident and an investigation to investigate into the probable cause(s) of the serious incident, was instituted under Rule 11 (1) of Aircraft (Investigation of Accidents and Incidents), Rules 2017.

1 FACTUAL INFORMATION

1.1 History of the Flight

On 01st April 2019, M/s Indigo Airbus A320-271 (NEO) aircraft VT-IVB, was scheduled to operate flight 6E-914 from Jaipur to Hyderabad. There was no abnormality reported on the aircraft during previous flights of the day. The aircraft was scheduled to depart from Jaipur at 1225 UTC and arrive Hyderabad at 1430 UTC.

The aircraft took-off from Jaipur at around 1249 UTC. At 1308 UTC, while climbing passing Flight Level 146, a loud bang was heard by the crew. Subsequently, 'ENG 1 STALL' was triggered on ECAM. This was followed by 'ENG 1 HGH VIB' and 'ENG 1 EGT OVERLIMIT' as well. The crew followed ECAM actions and QRH checklist/procedures for Engine Stall, Engine Vibration and EGT overlimit. The Engine parameters i.e., N1 and N2 vibrations were at 10 and the EGT was noticed to be increasing past 1000°C.

As the Engine parameters were abnormal, the crew decided to divert back to Jaipur. Accordingly, crew informed company on ACARS. ATC, Jaipur was also informed. The aircraft was diverted back to Jaipur. No Emergency was declared by the crew. After obtaining necessary clearances from ATC, Jaipur, the aircraft landed safely at Jaipur at 1327 UTC. After landing, 'ENG 1 OIL CHIP DETECTED' was triggered on ECAM. While turning into bay, 'ENG 1 FAIL' and 'ENG 1 START FAULT' were also triggered. ECAM procedures were carried out by the crew and the aircraft was parked at bay.

The passengers were disembarked normally. There was no fire and no injury to any occupant on board the aircraft. During post flight inspection, while carrying out visual inspection of the involved engine, i.e., inlet area and exhaust area of Engine # 1, Low Pressure Turbine 3rd stage blades were found damaged.

1.2 Injuries to Persons

There was no injury to any of the occupant on board the aircraft.

1.3 Damage to Aircraft

During post flight inspection and tear down examination the following salient damages on Engine # 1 were observed: -

1. Low Pressure Turbine (LPT) Drive shaft was found to have score marks.

- 2. Several blades of LPT Stage 1 were found to be damaged.
- 3. Several blades of LPT Stage 2 were found to be damaged.
- 4. All blades of LPT Stage 3 were found damaged (Fractured).
- 5. LPT Stage 1 Stator insulation segments were found cracked.
- 6. LPT Stage 1 Honeycomb cell walls were found to be deformed/rubbed.
- 7. LPT Stage 2 Stator insulation segments were found cracked.
- 8. LPT Stage 2 Shroud Segments were found with damaged honeycomb wall.
- 9. LPT Stage 3 vanes were observed to have impact damages.
- 10. LPT Case was found to have heavy deformation, nicks and cracks.
- 11. Turbine Exhaust Case was found to have impact damages.

1.4 Other Damages

Nil

1.5 Personnel Information

1.5.1 Pilot – In – Command

Age	53 Years
License & Validity	FATA - Valid
Category	PIC
Class I Medical Validity	Valid
Date of issue FRTOL License	12/09/2018
FRTO License Valid up to	30/01/2021
Endorsements as PIC	A320
Total flying experience	10444.24 HOURS
Total flying experience on type	4091.24 HOURS
Last Flown on type	26.03.2019
Total flying experience during last 1 year	123.24 HOURS
Total flying experience during last 6 Months	123.24 HOURS
Total flying experience during last 30 days	54.55 HOURS
Total flying experience during last 07 Days	7.04 HOURS
Total flying experience during last 24 Hours	4.68 HOURS
Rest period before flight	13.33 HOURS
Whether involved in Accident/Incident earlier	No

1.15.2 Co-Pilot

DOB	27 Years
License	ATPL
Date of Issue	19/03/2018
Valid up to	18/03/2023
Category	PIC
Class I Medical Validity	Valid
FRTO License Validity	Valid
Date of Endorsement as PIC	13.09.2019
Total flying experience	2678.20 HOURS
Total flying experience on type	2478.20 HOURS
Last Flown on type	31.03.2019
Total flying experience during last 1 year	732.00 HOURS
Total flying experience during last 6 Months	385.20 HOURS
Total flying experience during last 30 days	15.19 HOURS
Total flying experience during last 07 Days	15.19 HOURS
Total flying experience during last 24 Hours	6.76 HOURS
Rest period before flight	15.43 HOURS
Whether involved in Accident/Incident earlier	No

1.6 Aircraft Information

1.6.1 Airbus A-320 NEO

The Airbus A320 is narrow-body (single-aisle) aircraft with a retractable tricycle landing gear and is powered by two wing pylon-mounted turbofan engines. The A320 family aircraft fitted with new engines were named as NEO (New Engine Option) and the rest were named as CEO (Current Engine Option). These new engines were manufactured with the idea that it will consume less fuel as compared to other engines, reduced CO2 emissions and reduction in engine noise. A320 NEO can be fitted with either:

- The PW1127G-JM, manufactured by Pratt & Whitney or;
- The LEAP-1A, manufactured by CFM International.

The A320 NEO aircraft made its first flight on 25th September 2014 and it was first introduced by Lufthansa on 20th January 2016. A total of 38 operators worldwide are operating

A320 NEO family aircraft. After acceptance of Type Certification by DGCA, these A320 NEO aircraft (fitted with PW1127G-JM engines) were inducted by two airline operators in India i.e. M/s Indigo and M/s Go Air.

M/s Indigo inducted the first A320 NEO aircraft in its fleet on 11th March 2016. The number of A320 NEO family fleet operating in India and globally (as of November 2020) is given below:

	Airlines	А3	20 NEO	A:	321 NEO	Total
Global (Including India)	All		485		249	734
India	Indigo	115	161	25	25	186
	Go Air	46		0		

Table 1: A320/A321 Neo fleet Global vs India.

1.6.2 Brief Technical Description of PW1127G-JM Engine

The PW1127G-JM turbofan engine is an axial-flow, twin spool turbofan engine with an ultra-high bypass ratio, low speed gear-driven fan.

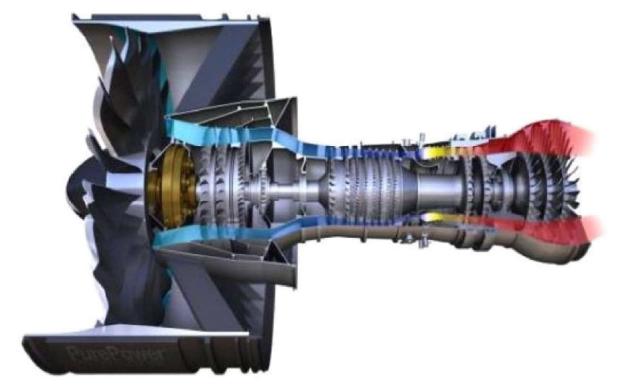


Figure 1: ENGINE CROSS SECTION

The engine comprises of Modules/Build Groups as shown below: -

1. Fan Rotor Group	13. High Compressor Front Case Group
2. Fan Drive Bearing Group	14. High Compressor Rotor Group
3. Fan Drive Gear Group	15. Diffuser Case Group
4. Fan Intermediate Case Group	16. Combustor and Turbine Nozzle Group
5. No. 2 Bearing Group	17. High Turbine Stator Group
6. Fan Case Group	18. High Turbine Rotor Group
7. Low Compressor Stator Group	19. Turbine Intermediate Case Group
8. Low Compressor Rotor Group	20. Low Turbine Stator Group
9. 2.5 Bleed Group	21. Low Turbine Rotor Group
10. Compressor Intermediate Case Group	22. Turbine Exhaust Case Group
11. No. 3 Bearing Group	23. Main Gearbox Group
12. High Compressor Rear Stator Group	24. Angle Gearbox Group

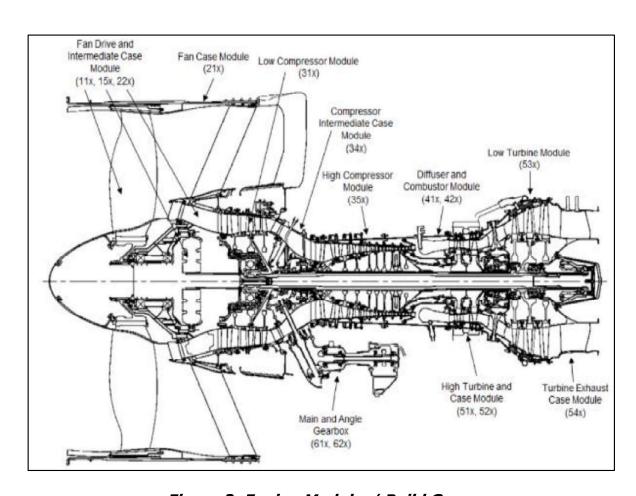


Figure 2: Engine Modules/ Build Group

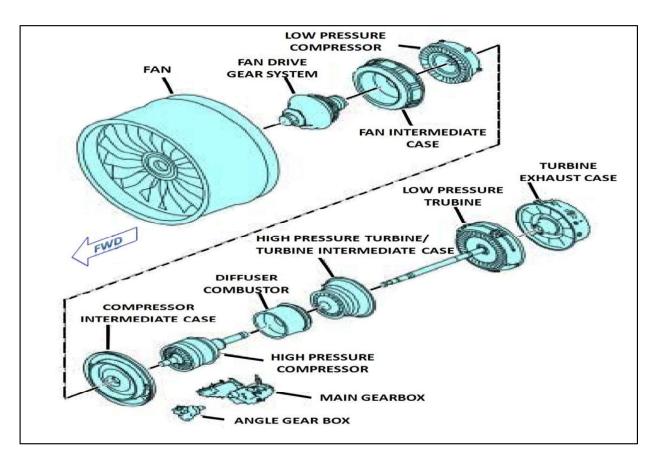
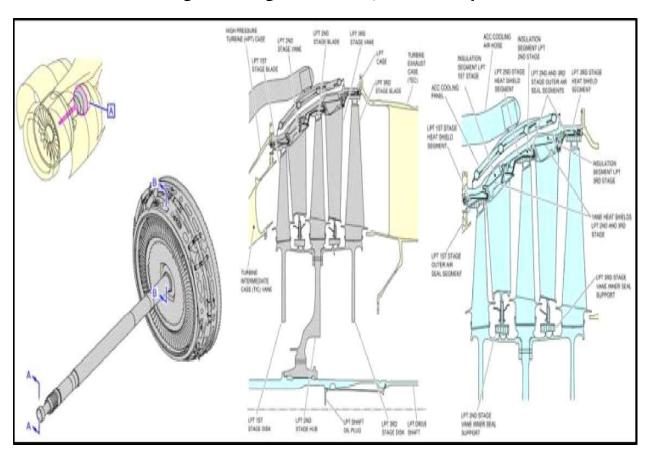



Figure 3: Engine Modules/ Build Group

<u>Figure 4 : LTM - LOW TURBINE MODULE</u>

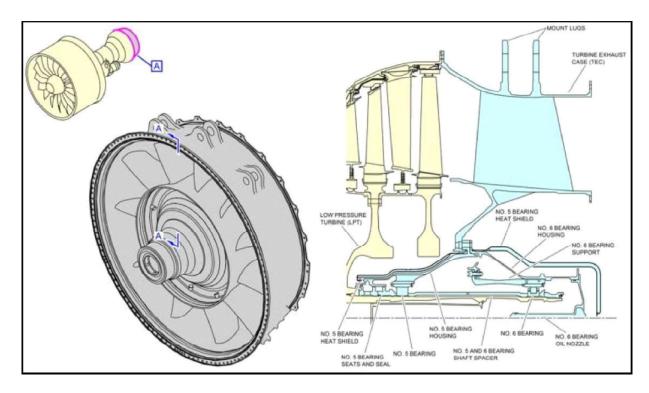


Figure 5: TECM - TURBINE EXHAUST CASE MODULE

1.6.3 Aircraft VT-IVB General Information

Aircraft Model	AIRBUS A320-271N
MSN	7914
Year of Manufacturer	2017
Name of Owner	M/s VERMILLION AVIATION (THREE)
	LIMITED
C of R	4847/1
C of A	6950
Category	NORMAL
C of A Validity	NO VALIDITY
A R C issued	04.12.2018
ARC valid up to	07.12.2019
Aircraft Empty Weight	42442.875 KG
Maximum Takeoff weight	73500.000 KG
Date of Aircraft weighment	20.11.2017
Operating Empty Weight	43382.225 KG
Max Usable Fuel	18622.000 KG

Max Payload with full fuel	11495.775 KG	
Operating Empty Weight C.G	25.480 % MAC	
Next Weighing due	19.11.2022	
Total Aircraft Hours	4473:27	
Last major inspection	750 FH/ 90 Days on 24.02.2019	
List of Repairs carried out after last	NIL	
major inspection till date of		
incidence:		
Engine Type	PW1127G-JM	
Date of Manufacture LH	29.06.2016	
Engine SI. No. LH	P770187	
Last major inspection (LH)	750 FH/ 90 Days on 24.02.2019	
List of Repairs carried out after last	NIL	
major inspection till date of		
incidence:		
Total Engine Hours/Cycles	4086:00/ 2766	
LH		
Date of Manufacture RH	22.07.2018	
Engine SI. No. RH	P770874	
Last major inspection (RH)	750 FH/ 90 Days on 24.02.2019	
List of Repairs carried out after last	NIL	
major inspection till date of		
incidence:		
Total Engine Hours/Cycles RH:	2319:21/ 1558	
Aero mobile License	31.01.2023	
AD, SB, Modification complied (LH	All Applicable AD, SB & Modification are	
ENGINE):	complied.	
AD, SB, Modification complied (RH	All Applicable AD, SB & Modification are	
ENGINE):	complied.	

All concerned Airworthiness Directives, mandatory Service Bulletins, and DGCA Mandatory Modifications on this aircraft and its engines were complied with as on date of event.

1.7 Meteorological Information

Enroute METAR information is given below: -

- VIJP 011200Z 32006KT 4000 HZ NSC 36/M05 Q1009 BECMG 3000 HZ=
- VIJP 011230Z 28006KT 3500 HZ NSC 36/M05 Q1009 BECMG 3000 HZ=
- VIJP 011300Z 30006KT 3000 HZ NSC 35/M05 Q1010 NOSIG=
- VIJP 011330Z 31004KT 3000 HZ NSC 34/M05 Q1010 NOSIG=
- VIJP 011400Z 33003KT 3000 HZ NSC 33/M04 Q1010 NOSIG=
- VIJP 011430Z 35004KT 3000 HZ NSC 32/M02 Q1011 NOSIG=

However, weather has no relevance to the subject incident.

1.8 Aids to Navigation

All Navigational Aids available at Jaipur airport were serviceable. The aircraft was equipped with standard navigational equipment and there was no recorded defect with the navigational equipment prior to the flight.

1.9 Communications

There was always a positive two-way communication between the aircraft & ATC.

1.10 Aerodrome Information

Jaipur International Airport is located in City of Jaipur. It is operated by Airports Authority of India (AAI). The IATA Location Identifier Code is JAI and ICAO Location Indicator Code is VIJP. The airport has two runways with orientation 09/27 and 15/33. The Airport Co-ordinates and elevation are as below: -

Lat : 26° 49' 27" N

Long : 075° 48' 09" E.

Elevation: 1263 feet (385 meters).

1.11 Flight Recorders

Both Solid State Cockpit Voice Recorder (SSCVR) and Solid-State Flight Data Recorder (SSFDR) were downloaded and readout was carried out. Relevant data was used for analysis and correlating with other evidences.

1.12 Wreckage and Impact Information

Not applicable as the damages were confined to core Engine # 1 only.

1.13 Medical and Pathological Information

The crew had undergone pre-flight medical including BA (Breath Analyzer) Test as per requirements. The test result was negative.

1.14 Fire

There was no fire.

1.15 Survival Aspects

The Incident was survivable.

1.16 Test and Research

1.16.1 Tear Down Reports from Pratt & Whitney

As per agreement between M/s Indigo and OEM, the damaged engine was replaced with a serviceable engine. The damaged LH engine was sent to OEM after the incident. The Engine was inducted in OEM's facility and, Engine Disassembly and Inspection was carried out. There were several similar occurrences involving the failure of LPT 3rd stage blades preceding this incident. The LPT 3rd stage blade failure was considered to be a known issue, which had a developed corrective action in place. No Technical Investigation was carried out by the OEM on the incident Engine (ESN P770187). The engine was repaired by replacing the defective hardware.

1.16.2 Failure Analysis Report from National Aerospace Laboratories, Bengaluru

AAIB, India got the fractured blades from Engine ESN P770187, P770530 and P770516 which had failed during different flights tested at National Aerospace Laboratories (NAL), Bengaluru to carry out Failure Analysis on these blades. ESN P770187 was fitted on VT-IVB at the time of incident. NAL carried out failure analysis of these blades and submitted a report to AAIB. Following are the salient observations made in the failure report: -

- Examination revealed that all 78 LPT 3rd stage blades had fractured in the airfoil at varying heights from the blade root platform.
- Impact damages were found present predominantly along trailing edge (TE) of the available part of the airfoil.

- Fracture surfaces of the blades showed a flat appearance with vaguely delineated chevron marks emanating from the crack origins in many occasions.
- Fractography study confirmed that LPT 3rd stage blades had fractured instantaneously in a brittle manner. None of the blades showed presence of any signatures of progressive failure such as fatigue.
- Scanning electron fractography study confirmed that the crack propagation in the blades was by mixed mode of cleavage and interlamellar separation. In the fractured blades, the fracture process in gamma-phase was by cleavage while it was by interlamellar separation in lamellar colonies.
- Metallurgical evaluation of the Material of Construction (MoC) showed that stage 3 LPT blades were made of a Gamma base Titanium Aluminide (TiAl), an intermetallic material. The MoC of the blades has the nominal composition of 52% Titanium (Ti), 43% Aluminium (Al), 4% Nobium (Nb) and 1% Molybdenum (Mo). The material did not have any metallurgical abnormalities that could be responsible for failure of the LPT blades.
- TiAl-base intermetallic materials are, in general, brittle in nature having low fracture toughness. Although, the alloy used for stage III LPT blades is an improved version of TiAl alloys with engineered microstructure, the material still lacks adequate damage tolerance properties compared to the conventional Nickel (Ni)-base superalloy that is generally used in this section of gas turbine engines.
- The MoC possessed a duplex microstructure consisting of mostly colonies of lamellae and isolated single phase gamma grains.
- Fatigue test conducted in this laboratory on the MoC of LPT 3rd stage blades showed that the material does not have enough crack growth resistance and after initiation, the crack propagates instantaneously leading to fracture.

1.17 Organizational and Management Information

The aircraft VT-IVB is operated by M/s Indigo which is an Indian registered Scheduled airline and one of the launch customers for the Airbus A320 NEO aircraft fitted with PW1127G-JM engines. It operates scheduled flights to both domestic and international sectors. It has got a fleet of Airbus A320/A321 and ATR-72 aircraft. As of November 2020, M/s Indigo has a total fleet of 140 (A320/A321) NEO aircraft. The operator first inducted NEO aircraft in the year 2016.

Initially, a total of 14 NEO aircraft were inducted by M/s Indigo in the year 2016. The year wise induction of NEO fleet (Graphical Representation) by M/s Indigo is shown below: -

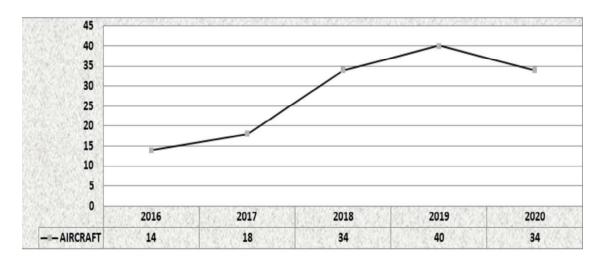


Figure 6: Year wise induction of NEO fleet

1.18 Additional Information

1.18.1 Typical Snags Reported in PW1127G-JM Engines

Since the induction of PW1127G-JM engines in India in the year 2016, there have been a number of snags reported on aircraft fitted with these engines. Most of the snags were repetitive in nature. In order to prevent reoccurrence of such failures, Pratt & Whitney came up with some rectification actions/modifications for each snag.

The following table depicts the Typical Snags and Rectification Action/Modification carried out by Pratt & Whitney along with the status of action taken by M/s Indigo as of 17th Nov 2020:

Sr.	Typical Snag Reported	Rectification Action proposed by P&W	Action Taken by M/s Indigo (As of 17 th Nov 2020)
1.	#3 bearing seal failure	Issued SB 72-00-087	All Indigo engines are post SB 72-00-0087.
2.	Combustor failure	Issued SB 72-00-0136	176 IGO engine are post SB 72-00-0136.
3.	Low Pressure Turbine failure	Issued SB 72-00-0111	All IGO engine are post SB 72-00-0111.
4.	N2 Vibration	SB 72-00138 was released to replace HPC stage 6 ring seal with modified one.	134 engines are flying with post mod HPC 6 ring seal

5.	MGB IDG/LSOP gear	Issued SB 72-00-0129	30 engines are Pre SB 72-
	failure.		00-0129.

Table 2: Typical Engine Failures and Rectification Action by Pratt & Whitney.

The typical engine failures discussed in above para led to significant occurrences like In-Flight Shut Down (IFSD), Air Turn Back (ATB), Ground Turn Back (GTB), Rejected Take-Off (RTO), etc. The type and number of occurrences (Involving Indigo & Go Air aircraft) corresponding to each of the typical engine failures are listed below: -

Type of Failure Type of Event	# 3 bearing seal failure	Combustor failure	LPT failure	N2 Vibration	MGB IDG/LSOP gear failure.
RTO (Rejected Take-off)	Nil	1	Nil	2	Nil
Engine Stall	Nil	Nil	1	Nil	Nil
ATB (Air Turn Back)	Nil	1	18	5	3
GTB (Ground Turn Back)	Nil	Nil	Nil	1	Nil
Diversion	Nil	Nil	6	1	1
Diversion/ATB	Nil	Nil	Nil	Nil	Nil
Emergency Landing	1	Nil	Nil	Nil	Nil

Table 3. Type of Occurrences corresponding to each engine failure.

Out of the significant occurrences mentioned in the table above, 18 occurrences were classified as serious incidents by AAIB and Annex 13 investigation were instituted to investigate these serious incidents.

Further distribution of these 18 serious incidents corresponding to type of failure is as below: -

Type of Failure	Number of Serious Incidents
# 3 bearing seal failure	01
LPT failure	15
N2 Vibration	01
MGB IDG/LSOP gear failure.	01

Table 4. Number of serious incidents corresponding to type of failures.

As per the above table, it can be seen that majority of these serious incidents corresponds to LPT failure wherein the Blades of 3rd Stage of LPT failed in flight. As per agreement between M/s Indigo and OEM, the damaged engines were replaced by serviceable engines. All engines involved in the 18 serious incidents discussed above were quarantined after the occurrence and sent to OEM (Pratt & Whitney) facility in USA and Germany for repair.

Pratt and Whitney did not subject any of these engines to any technical investigation as the events were similar to various prior occurrences and considered to be a known issue. The Disassembly and Tear down report of all these Engine was shared with AAIB through Accredited Representative of NTSB.

1.18.2 Service Bulletin 72-00-0111

Service Bulletin (SB) on "Engine - Disk, LPT 3rd Stage and Blade, LPT 3rd Stage and Shroud-Segment, Ring, 3rd Stage - Introduction of a New LPT 3rd Stage Blade which is more resistant to Impact Damage". The SB was initially issued on 14th May 2019, thereafter Issue 2 was issued on 18th October 2019 and finally, Issue 3 was issued on 28th May 2020.

The reason for issue of this SB was given as "LPT 3rd stage blades fractured in service due to impact damage". The cause of failure was given as "The LPT 3rd stage blade material is sensitive to impact damage." The solution to this failure was given as "Introduction of a new LPT 3rd stage blade made of a different material which is more resistant to impact damage."

The SB required that the LPT 3rd stage disk, blades, locking plates, and shroud segments be replaced by the new set made of different material.

1.18.3 Guidelines/Deadline given & action taken by DGCA.

DGCA issued a deadline (to M/s Indigo) stating that, each A320 NEO aircraft with PW1127G-JM engine (where both engines of which has done more than 2900 FH) must have at least one LPT modified engine installed forthwith. Further, it stated that, all the A320 NEO aircraft fitted with Pratt and Whitney engines must have LPT modified for both its engines by 31st January 2020.

On 25th November 2019, DGCA issued an order stating that the new aircraft which has been inducted will slip into the role of one existing aircraft with unmodified (LPT) engines. It was also stated that no leased engines without modified LPT 3rd stage shall be imported. Thereafter,

DGCA on 19th December 2019 issued an order stating that the order dated 25th November 2019 and 16th December 2019 will be kept in abeyance to the extent of grounding an existing aircraft with both unmodified engines upon induction of new aircraft in the fleet of Indigo. However, it said all other advisories issued by DGCA regarding the same will continue to remain in force.

DGCA issued order dated 13th January 2020 in which they extended the deadline of replacement of un-modified engines with modified engines to 31st May 2020. Later on, 27th May 2020, DGCA issued yet another order wherein the deadline was further extended to 31st August 2020 keeping in view of the COVID19 pandemic.

By 26th August 2020 all the PW1127G-JM engines (280 engines) of Indigo had complied with SB 72-00-0111 i.e., all its NEO fleet (140 aircraft) were installed with LPT modified engines.

1.19 Useful or Effective Investigation Techniques

Nil

2 ANALYSIS

2.1 General

- Both pilots were appropriately licensed and qualified to operate the flight.
- The aircraft had a valid Certificate of Airworthiness at the time of incident. The Aircraft held a valid Certificate of Release to Service which was issued at the airport of departure. Airworthiness Directives & Service Bulletins were complied with. Transit Inspections were carried out as per the approved Transit Inspection Schedules and all higher Inspection Schedules including checks/inspection as per the manufacturer's guidelines and specified in Maintenance Programme.

2.2 Circumstances Leading to the Incident

VT-IVB was equipped with PW1127G-JM engine Sr. No. 770187. This engine was fitted with pre-modified LPT 3rd stage blades which had less crack growth resistance and impact tolerance. The aircraft suffered LPT 3rd stage blade failure while climbing passing Flight Level 146. A loud bang was heard by the crew. Subsequently, 'ENG 1 STALL' was triggered on ECAM. This was followed by 'ENG 1 HGH VIB' and 'ENG 1 EGT OVERLIMIT' on ECAM. The crew followed ECAM actions and QRH checklist/procedures for Engine Stall, Engine Vibration and EGT overlimit. The Engine parameters were observed to be abnormal and the crew decided to

divert back to Jaipur. No Emergency was declared by the crew. Aircraft made a safe landing at Jaipur after obtaining necessary clearances from ATC.

During post flight inspection while carrying out visual inspection of the involved engine, Low Pressure Turbine 3rd stage blades were found damaged. Incident was one amongst series of similar events and hence Pratt and Whitney did not carry out Technical Investigation into this case.

2.3 LPT 3rd stage blade failure and preventive action.

Based on the analysis by NAL, Bengaluru to study Material of Construction (MoC) it was determined that the pre-modified LPT stage 3 blades are made of gamma-based Titanium Aluminide (TiAl) which is, in general, brittle in nature having low fracture toughness. Although, the alloy used for LPT blades 3rd stage blades is an improved version of TiAl alloys with engineered microstructure, the material still lacked adequate damage tolerance properties. It was confirmed during the fractography study conducted by NAL, Bengaluru that LPT 3rd stage blades of the Engine ESN 770187, 770530 and 770516 had fractured instantaneously in a brittle manner and none of the blades showed presence of any signatures of progressive failure such as fatigue.

The fatigue test further confirmed that the material does not have enough crack growth resistance and after initiation, the crack propagated instantaneously leading to fracture. It is, therefore, evident that the LPT stage 3 blades failed in flight as these blades could not withstand possible impact from material liberated upstream and got fractured instantaneously. This led to engine high vibration and EGT overlimit.

Subsequent to directions issued by the DGCA to equip all aircraft with LPT modified engines, the airlines complied with SB 72-00-0111 and all its A320 NEO fleet (140 aircraft) were installed with LPT modified engines.

3 CONCLUSION

3.1 Findings

- 1. The aircraft had valid Certificate of Airworthiness, Certificate of Registration and the Certificate of Flight Release before operating the incident flight.
- 2. Both pilots were appropriately qualified to operate the flight.

3. There was no fire and no injury to any occupant on board the aircraft.

4. During post flight inspection, while carrying out visual inspection of the involved engine,

i.e., inlet area and exhaust area of Engine # 1, Low Pressure Turbine 3rd stage blades were

found damaged.

5. The incident was similar to series of other events where LPT 3rd stage blades failed during

operation. The failure was considered to be a known issue by the OEM and no Technical

Investigation was carried out by the OEM.

6. Failure Analysis of blades at NAL, Bengaluru indicated that the LPT 3rd stage blades

material had less crack growth resistance and damage tolerance which causes the crack to

propagate instantaneously after initiation leading to fracture.

7. Pratt & Whitney has issued SB 72-00-0111 to introduce of a new LPT 3rd stage blade

made of a different material which is more resistant to impact damage. The airline has

incorporated the said SB in all its affected aircraft.

3.2 Probable Cause of the Incident

The incident was caused by failure of LPT 3rd stage blades in flight as the blade material

lacked crack growth resistance and damage tolerance to withstand any impact from material that

may have liberated upstream.

4. SAFETY RECOMMENDATIONS

In view of corrective action initiated by the OEM to introduce new blades with better impact

resistance and subsequent compliance by the Airline no recommendation is made.

Jasbir Singh Larhga

Investigator - In - Charge

Tarkin Sixt

K Ramachandran

K. Ramachandran

Investigator

19